

 THE HYPERCUBE IMPLEMENTATION OF
 THE FINITE-DIFFERENCE TIME-DOMAIN (FD-TD) METHOD
 FOR ELECTROMAGNETIC WAVE SCATTERING

 Daniel Steven Katz
 EECS Department, Technological Institute
 Northwestern University
 Evanston, IL 60208

 Presented as the report of
 EECS C99 work done within
 the EECS Department Honors Program
 during the year 1987-88
 under Dr. Allen Taflove, Professor

2

 Introduction

 The Hypercube (Intel iPSC) is a parallel-processing computer comprised of one
master controller and an array of 2n nodes, where n may be varied from 0 to 4. A
finite-difference time-domain (FD-TD) code, which was developed by Kane Yee1 and
further expanded by Allen Taflove2, can be divided naturally among the nodes, so that the
time to solve a problem can be reduced by a factor of approximately 2n. Of course, the
implementation on the Hypercube adds a certain amount of overhead for communication
between the nodes which lowers the time reduction afforded by this implementation.
 This report discusses two methods which seem reasonable for the implementation
of the FD-TD code in one dimension. It then explains the choice between the methods
based on benchmark testing, and discusses the implementation of the chosen method in
two dimensions, including benchmark times. The report concludes with a discussion of
the pros and cons of the Hypercube implementation of the FD-TD method.

1 K. S. Yee, “Numerical solution of initial boundary value problems involving

Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagation, vol. AP-
14, pp. 302-307, May 1966.

2 A. Taflove and M. E. Brodwin, “Numerical Solution of steady-state electromagnetic
scattering problems using the time dependent Maxwell's equations,” IEEE Trans.
Microwave Theory Tech., vol. MTT-23, pp. 623-630, Aug. 1975.

3

 One Dimension

 The Two Methods in One Dimension

Method 1

In each time step, node X receives Hy(1) from node X-1,and sends Hy(IE+1) to node
X+1. It then calculates electric field components from Ez(1) to Ez(IE). After this,
Ez(IE+1) is received from node X+1, and Ez(1) is transmitted to node X-1, and then
magnetic field components from Hy(2) to Hy(IE+2) are calculated.

Method 2

In each time step, node X sends Hy(IE+1) to node X+1 and receives Hy(IE+2) from node
X+1. It also sends Hy(2) to node X-1 and receives Hy(1) from node X-1. Node X can
then compute Ez(1) to Ez(IE+1), and then Hy(2) to Hy(IE+1). It should be noted that
Ez(IE+1) of node X is the same as Ez(1) of node X+1, and that Ez(1) of node X is
equivalent to Ez(IE+1) of node X-1.

4

 Hypercube Benchmark Times

ΔX =
λ
20 , f = 200 MHz, ΔT =

ΔX
c , free space with hard source at left

edge and perfectly absorbing RBC
 Method #1 Method #2
 Length Number Length Number of Time Time
 (cells) of Nodes per Node Time Steps (seconds) (seconds)
 1024 2 512 1000 107.04 107.14
 1024 4 256 1000 59.76 59.69
 1024 8 128 1000 39.69 35.71
 1024 16 64 1000 28.33 26.92

 128 2 64 1000 16.92 17.02
 256 4 64 1000 21.59 21.26
 512 8 64 1000 28.09 23.29
 1024 16 64 1000 28.33 26.92

 2048 2 1024 1000 194.02 194.13
 1024 2 512 1000 107.04 107.14
 512 2 256 1000 57.24 57.35
 256 2 128 1000 30.52 30.63
 128 2 64 1000 16.92 17.02

It appears that method #1 is slightly faster for small numbers of nodes, but as the number
of nodes increases, method #2 becomes better. For this reason, method #2 is used for the
analysis of data which follows, and for the two dimensional implementation.

5

0 10 20
20

40

60

80

100

120

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Time (seconds) vs. number of nodes
with total grid length constant

0 10 20
16

18

20

22

24

26

28

number of nodes

tim
e

(s
ec

on
ds

)

Time (seconds) vs. number of nodes
with length per node constant

Ti
m

e
(s

ec
on

ds
)

0 200 400 600 800 1000 1200
0

100

200

Length per node

Ti
m

e
(s

ec
on

ds
)

Time (seconds) vs. length per node
with number of nodes constant

6

 Two Dimensions

 The Method in Two Dimensions

 The above diagram illustrates one node in the two dimensional FD-TD model.
The node size is 664. All of the Hx and Hy components may be calculated with the
normal FD-TD algorithm, as may the Ez components which are not on the edges. These
edge components are either transmitted from adjacent nodes, in which case the Ez values
in the next row or column will be transmitted to that adjacent node, or they may be
calculated using Mur radiation boundary conditions if there is no adjacent node. Thus,
the total dimension of an 464 array of nodes in which each node is of dimension 664
would be 26618 (4*6+264*4+2). Total field/scattered field computations may be done
by realizing the overall coordinate of each component, as well as its local coordinate
within its node.

7

 Hypercube Benchmark Times

ΔX =
λ
20 , f = 200 MHz, ΔT =

ΔX
2c , Total field/Scattered field

implementation with Mur radiation boundary conditions.

 Total Size Dimension Size Number of Time
 (cells)of Nodes per Node Time Steps (seconds)
 10610 161 10610 100 19.51
 20620 262 10610 100 21.43
 40640 464 10610 100 23.25
 80680 161 80680 100 259.20
 1606160 262 80680 100 259.65
 3206320 464 80680 100 262.35

 40640 161 40640 100 63.74
 40640 262 20620 100 30.27
 40640 464 10610 100 23.25
 80680 161 80680 100 259.20
 80680 262 40640 100 84.46
 80680 464 20620 100 37.66

 40640 464 10610 100 23.25
 80680 464 20620 100 36.00
 1606160 464 40640 100 81.18
 3206320 464 80680 100 262.35

8

9

 Conclusions

 It appears that as the number of nodes is increased, a limiting time is approached,
which is that of the communication between nodes. A Hypercube of dimension 24 or 25

would be optimal, in terms of performance versus cost of the computer. However, a
386-based Hypercube would substantially outperform the 286-based Hypercube on which
these results were based, and the optimal dimension might increase due to reduced
communication time. More importantly, it also has been shown that given a constant
number of cells per node, the total grid size may be expanded by using more nodes of the
same size without much loss of running time.
 The major problem with this implementation is that of inserting the scattering
object, since different portions of the scatterer lie in each node, and there is some overlap
between nodes. This is simply a problem of memory, though, and as long as there is
sufficient memory, it can be ignored. Another problem is that the code is more difficult
to understand for one who is not an expert in Fortran, but once the code has been written,
the only modification which must be made is to the scatterer specification section.
 It appears that, in general, the Hypercube implementation is better and faster than
the standard personal computer implementation.

