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 Introduction 
 
 The Hypercube (Intel iPSC) is a parallel-processing computer comprised of one 
master controller and an array of 2n nodes, where n may be varied from 0 to 4.  A 
finite-difference time-domain (FD-TD) code, which was developed by Kane Yee1 and 
further expanded by Allen Taflove2, can be divided naturally among the nodes, so that the 
time to solve a problem can be reduced by a factor of approximately 2n.  Of course, the 
implementation on the Hypercube adds a certain amount of overhead for communication 
between the nodes which lowers the time reduction afforded by this implementation. 
 This report discusses two methods which seem reasonable for the implementation 
of the FD-TD code in one dimension.  It then explains the choice between the methods 
based on benchmark testing, and discusses the implementation of the chosen method in 
two dimensions, including benchmark times.  The report concludes with a discussion of 
the pros and cons of the Hypercube implementation of the FD-TD method. 

                                                
1 K. S. Yee, “Numerical solution of initial boundary value problems involving 

Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagation, vol. AP-
14, pp. 302-307, May 1966. 

2 A. Taflove and M. E. Brodwin, “Numerical Solution of steady-state electromagnetic 
scattering problems using the time dependent Maxwell's equations,” IEEE Trans. 
Microwave Theory Tech., vol. MTT-23, pp. 623-630, Aug. 1975. 
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 One Dimension 
 
 The Two Methods in One Dimension 
 
Method 1 
 

 
 
In each time step, node X receives Hy(1) from node X-1,and sends Hy(IE+1) to node 
X+1.  It then calculates electric field components from Ez(1) to Ez(IE).  After this, 
Ez(IE+1) is received from node X+1, and Ez(1) is transmitted to node X-1, and then 
magnetic field components from Hy(2) to Hy(IE+2) are calculated. 
 
Method 2 
 

                     
 
In each time step, node X sends Hy(IE+1) to node X+1 and receives Hy(IE+2) from node 
X+1.  It also sends Hy(2) to node X-1 and receives Hy(1) from node X-1.  Node X can 
then compute Ez(1) to Ez(IE+1), and then Hy(2) to Hy(IE+1).  It should be noted that 
Ez(IE+1) of node X is the same as Ez(1) of node X+1, and that Ez(1) of node X is 
equivalent to Ez(IE+1) of node X-1. 
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 Hypercube Benchmark Times 
 

ΔX = 
λ
20  ,   f = 200 MHz,   ΔT = 

ΔX
c  , free space with hard source at left 

edge and perfectly absorbing RBC 
     Method #1 Method #2  
 Length Number Length Number of Time Time 
    (cells) of Nodes per Node Time Steps (seconds) (seconds) 
 1024 2 512 1000 107.04 107.14 
 1024 4 256 1000 59.76 59.69 
 1024 8 128 1000 39.69 35.71 
 1024 16 64 1000 28.33 26.92 
 
 128 2 64 1000 16.92 17.02 
 256 4 64 1000 21.59 21.26 
 512 8 64 1000 28.09 23.29 
 1024 16 64 1000 28.33 26.92 
 
 2048 2 1024 1000 194.02 194.13 
 1024 2 512 1000 107.04 107.14 
 512 2 256 1000 57.24 57.35 
 256 2 128 1000 30.52 30.63 
 128 2 64 1000 16.92 17.02 
 
It appears that method #1 is slightly faster for small numbers of nodes, but as the number 
of nodes increases, method #2 becomes better.  For this reason, method #2 is used for the 
analysis of data which follows, and for the two dimensional implementation. 
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 Two Dimensions 
 
 The Method in Two Dimensions 
 
    

 
 
 
 
 The above diagram illustrates one node in the two dimensional FD-TD model.  
The node size is 664.  All of the Hx and Hy components may be calculated with the 
normal FD-TD algorithm, as may the Ez components which are not on the edges.  These 
edge components are either transmitted from adjacent nodes, in which case the Ez  values 
in the next row or column will be transmitted to that adjacent node, or they may be 
calculated using Mur radiation boundary conditions if there is no adjacent node.  Thus, 
the total dimension of an 464 array of nodes in which each node is of dimension 664 
would be 26618 (4*6+264*4+2).  Total field/scattered field computations may be done 
by realizing the overall coordinate of each component, as well as its local coordinate 
within its node. 
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 Hypercube Benchmark Times 
 

ΔX = 
λ
20  ,   f = 200 MHz,   ΔT = 

ΔX
2c  , Total field/Scattered field 

implementation with Mur radiation boundary conditions. 
 
 Total Size Dimension Size Number of Time 
      (cells)of Nodes per Node Time Steps (seconds)                
 10610 161 10610 100 19.51 
 20620 262 10610 100 21.43 
 40640 464 10610 100 23.25 
 80680 161 80680 100 259.20 
 1606160 262 80680 100 259.65 
 3206320 464 80680 100 262.35 
 
 40640 161 40640 100 63.74 
 40640 262 20620 100 30.27 
 40640 464 10610 100 23.25 
 80680 161 80680 100 259.20 
 80680 262 40640 100 84.46 
 80680 464 20620 100 37.66 
 
 40640 464 10610 100 23.25 
 80680 464 20620 100 36.00 
 1606160 464 40640 100 81.18 
 3206320 464 80680 100 262.35 
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  Conclusions 
 
 It appears that as the number of nodes is increased, a limiting time is approached, 
which is that of the communication between nodes.  A Hypercube of dimension 24 or 25 

would be optimal, in terms of performance versus cost of the computer.  However, a 
386-based Hypercube would substantially outperform the 286-based Hypercube on which 
these results were based, and the optimal dimension might increase due to reduced 
communication time. More importantly, it also has been shown that given a constant 
number of cells per node, the total grid size may be expanded by using more nodes of the 
same size  without much loss of running time. 
 The major problem with this implementation is that of inserting the scattering 
object, since different portions of the scatterer lie in each node, and there is some overlap 
between nodes.  This is simply a problem of memory, though, and as long as there is 
sufficient memory, it can be ignored.  Another problem is that the code is more difficult 
to understand for one who is not an expert in Fortran, but once the code has been written, 
the only modification which must be made is to the scatterer specification section. 
 It appears that, in general, the Hypercube implementation is better and faster than 
the standard personal computer implementation. 


