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Abstract

Systems that operate in extremely volatile environments,
such as orbiting satellites, must be designed with a strong
emphasis on fault tolerance. Rather than rely solely on the
system hardware, it may be beneficial to entrust some of the
fault handling to software at the application level, which
can utilize semantic information and software communica-
tion channels to achieve fault tolerance with considerably
less power and performance overhead. This paper details
the implementation and evaluation of such a software-level
approach, Application-Level Fault Tolerance and Detection
(ALFTD) into the Orbital Thermal Imaging Spectrometer
(OTIS).

1. Introduction
This paper considers an application that is intended to

run in a hostile environment - the Orbital Thermal Imag-
ing Spectrometer (OTIS), part of NASA’s Remote Explo-
ration and Experimentation (REE) [1] project which fo-
cused on the implementation of a distributed system in or-
biting, space bound, or even extra-terrestrial environments.
OTIS does not have any inherent methods of fault detection,
nor methods for tolerance of component-disabling faults
(beyond its dynamic allocation scheme). Fault detection and
tolerance would need to be implemented either in the under-
lying hardware, or in lower-level software such as the OS.
While these may be able to compensate for obvious faults,
such as a failed processor, they may not help when subtle er-
rors like data corruption arise.

By entrusting an amount of fault detection and tolerance
to the application itself, redundancy can be more efficiently
utilized. By knowing the type of output which should be
produced, deviant data can be suspected as faulty, and ad-
hoc redundancy can be used to double-check the integrity
of the suspect data and possibly provide the correct output,
at the price of some runtime increases.

The paper briefly sketches the Application Level Fault
Tolerance (ALFT) and Application Level Fault Tolerance
and Detection (ALFTD) methodologies. It explores the
types of data trends in OTIS that can be used for applying
ALFTD by providing for fault detection and correction, and
provides methods for fine-tuning the fault detection mech-
anisms. While this paper is limited to the exploration of a

single application, the methodology used to apply ALFTD
to OTIS provides insights which will be useful when apply-
ing ALFTD to other, similar, applications.

2. ALFTD vs. ALFT

A well-known software-based fault tolerance technique
is Algorithm-Based Fault Tolerance (ABFT) whose primary
function is to detect and correct errors at the word or data-
structure level. ABFT was introduced in 1984 [2], with re-
cent works on the topic which include [4] [3] [5]. For the
most part, ABFT techniques have been geared toward pro-
viding fault tolerance in matrix operations in multiprocessor
systems. To suit applications like OTIS with limited matrix
operations, ABFT must be modified in order to be useful.

In previous research documented in [6], we described
ALFT (Application-Level Fault Tolerance), a means by
which to compensate for the failure of processing nodes
in a real-time system without creating significant over-
head or deadline misses. This is accomplished in software
through partial redundancy, with neighboring nodes execut-
ing scaled-down versions of the primary processes.

We demonstrated ALFT’s viability in several benchmark
applications, by showing that software redundancy need not
rely on mirror copies of processes. In a real-time target
tracking application (RTHT) [7], faults disabling the “pri-
mary” process of a node could be almost completely toler-
ated by the run of a scaled down “secondary” process. These
secondary processes could run with a calculation overhead
as low as 17% of the primary’s load and still produce vi-
able results. Such a lightweight secondary incurs tolerably
small runtime overhead, and can be run after the primary on
a particular node has finished, thus eliminating the need for
hardware redundancy.

The distribution of secondaries and primaries allowed for
the tolerance of even processor-disabling faults. The typical
distribution of primaries and secondaries is shown in Fig. 1.
With a distribution such as this, if node 1 should become un-
usable, node 2’s secondary process would still complete the
work expected from node 1’s primary process (at lower res-
olution). This model is used for applications that have dis-
tinct process workloads - work assigned statically to each
node based on its identity. Further research with dynamic
workload allocation has shown that such secondary iden-
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tity is not always necessary, and that secondaries which dy-
namically distribute work can compensate for a fault with a
more balanced overall runtime.

SP2 2
(1)Process 2

SP1 1
(4)Process 1

SP3 3
(2)Process 3

SP4 4
(3)Process 4

Period Begins Period Ends

Figure 1. A typical ALFT task allocation

Previous ALFT work provided general methods by
which to reduce the overhead of a secondary process.

� Prioritizing: The secondary is scaled by considering
only the most important data. By ignoring unimportant
data, only a part of the calculations need to be com-
pleted. This method assumes that the relative impor-
tance of data is inherent or easily determinable.

� Functional Reduction: The secondary is scaled by sub-
stituting the primary algorithm for faster, but less ac-
curate, alternatives. This method would also preclude
any other method of overhead savings through approx-
imation of results (e.g., precomputed lookup tables).

� Granularity Reduction: The secondary is scaled by us-
ing only a predetermined fraction of the input data,
such as every �th element in a matrix. The remain-
ing data is compensated by interpolation between ad-
jacent elements, or the result of one element is applied
to a greater area of elements.

Similarly to ALFT, the ALFTD (Application-Level Fault
Tolerance and Detection) methodology is based on the
structure of primary and secondary processes seen in Fig. 1.
However, the secondary process is invoked only if the pri-
mary process results in a suspect result. The secondary’s re-
calculated result is then compared to the suspect result and a
determination is made as to whether the output was caused
by a transient fault or is a correct result which happens to
be out-of-range.

ALFTD has two main advantages over ALFT. While an
application with ALFT can survive total processor failures,
the lack of sanity checks causes data corruption faults to
remain largely undetected. Also, fault tolerance in ALFT

is provided proactively, continuously invoking overhead,
while ALFTD only requires secondaries to be run reactively
when a fault has manifested itself. ALFTD’s computation
overhead is thus proportional to the fault rate, with some
negligible constant overhead due to fault detection filter-
ing. If faults are rare, ALFTD’s calculation overhead will
be consistently low. In cases of frequent faults, where the
overhead of the secondary becomes more prominent, the
calculation overhead is directly proportional to the granu-
larity of the secondaries. Computation overhead is also de-
pendent on the accuracy of the application’s fault detection
filters, as inaccurate filters can sometimes result in unnec-
essary task redundancy. This makes the calibration of filters
important not only to an application’s error minimization,
but also to the reduction of its calculation overhead.

In order for ALFTD to detect potentially faulty outputs,
one or more filtering “bands” are created. If the produced
value is within some acceptance interval, it is considered
valid, while if outside the interval, it is suspected to be in-
valid. The suspect data is then reprocessed at secondary res-
olution, and if the result is acceptable, it is assumed that the
primary was faulty and the secondary result is used. If the
secondary returns an approximately similar or a worse re-
sult, it is assumed that either the fault was a false alarm, or
that the secondary has itself failed.

3. The OTIS Application

The Orbiting Thermal Imaging Spectrometer, a proto-
type application developed by the University of Washing-
ton for NASA’s REE project [1], was selected for this study
due to the high likelihood of environmentally induced errors
during its execution. OTIS, as the name implies, is satellite-
based software to be run in an orbiting distributed system.
Using on-board sensors, radiation data is collected from the
atmosphere, refined to provide temperature and emissivity
data, and presented as a simple color-coded bitmap. The or-
biting environment of this system makes it a target for po-
tentially destructive radiation, so the necessity for accurate
fault detection and tolerance is apparent.

OTIS utilizes the MPI library [8] for its network commu-
nication. MPI is open-source software, so it has been modi-
fied to accommodate a variety of platforms as well as under-
lying network hardware. The use of standard MPI calls al-
lows code written for a general distributed system to be ap-
plied to the specific system of an orbiter, with no code alter-
ation and approximately the same overall behavior. In OTIS,
each physical processor may be allocated one or more tasks.
Primary and secondary tasks are allocated distinctly.

Input to OTIS is in the form of a three-dimensional array.
The � and � dimensions correspond to geographical space
on the surface of a planet. The � dimension is comprised
of the same space measured in various wavelengths of radi-
ation. OTIS’s output comes in various forms. Immediately
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available are the numerical representations of temperature
and emissivity data. Temperature, in Kelvin, is expressed as
a two-dimensional array of floating-point numbers for the
same � and � dimensions as the input. This data can also be
expressed as a greyscale output in a bitmap. Emissivity data
is in the same format and size as the input, and shows the ra-
diation emitted by the scanned surface, minus ambient, at-
mospheric, and other forms of noise radiation.

OTIS’ calculations are performed in a master/slave fash-
ion. Each working node is assigned an ID number, with
node 0 as the master. The master maintains a list of which
rows (in the geographical � dimension) are yet to be calcu-
lated, and allocates them one at a time to the slaves. Once a
slave receives a row, it performs a series of calculations on
the data. The calculated values are returned to the master,
where they are stored in an output file, and also in a bitmap,
if so configured. When it returns the results, the master, a re-
flexive process, assigns the next available row. This contin-
ues until the entire dataset has been computed, and the mas-
ter sends a stop sentinel to all the slaves.

4. Applying ALFTD to OTIS
Even if we consider the master process to be fault-free,

OTIS is still susceptible to faults in the slave processes. We
consider two types of faults - the crash of an entire process-
ing node, or an error caused to a single data pixel while it re-
sides in memory, is being processed, or is being transferred
over the network.

OTIS has a dynamic task allocation of its workload, and
as such already has facilities for load rebalancing when an
entire node crashes - the remaining nodes will do the ex-
tra work in the same first-come, first-served manner as in
a non-faulty execution. Thus, the rest of this paper is de-
voted to detecting and correcting faults occurring in indi-
vidual pixels.

We model the correct results of calculating one dataset
as an array of ����� floating-point pixels ����� ���. Each
pixel has a probability �� of being faulty (independently of
each other) and the error of a faulty pixel is a random vari-
able.

ALFTD consists of two components - detecting an er-
roneous pixel, and reassigning the row in which the error
occurred to a secondary process for (scaled down) recalcu-
lation. Although OTIS is not a hard real-time process and
does not have strict deadlines, it must complete its work
before the next batch of data arrives. Thus, for successful
ALFTD implementation, these two components need to be
performed quickly and with high efficiency.

4.1. Fault Detection

OTIS does not have an inherent way to detect errors in ei-
ther the input data or output results, so no one acceptance
test will have 100% accuracy. For good fault coverage, mul-
tiple tests applied in series on the output data are necessary.

These acceptance tests (henceforth “filters”) are application
and data dependent. Each filter has two boundary values,
the lower (left) bound and the upper (right) bound. Data out-
side these bounds is suspected to be faulty. Each boundary
value can be set independently. In the case of OTIS, the re-
sults are expected to have two characteristics that will be
present in non-faulty data - one in the data domain and one
the gradient domain.

� Natural Bounds - The data represents a natural phe-
nomenon (e.g., temperature, radiation), so it will
mostly fall within an expected range. For exam-
ple, while doing a temperature survey of the Earth,
we should not expect to find anything too far be-
low freezing, nor near the boiling point of water
(with the exception of expected items like active vol-
canoes). When surveying a localized geographic
area of only a few meters or kilometers, as a satel-
lite would do, the cutoff values can be placed even
tighter.

� Spatial Locality - The data within a small geographic
area will change gradually. While dramatic sudden
changes (hot or cold spots) are not unheard of, heat
dispersion tends to average the spots into their sur-
rounding area. Even so, the temperature within the
spot is usually locally consistent, so the only incon-
sistent data will be along the spot’s edges. This filter
calculates the differences between neighboring pixels
and expects them to fall within the acceptance inter-
val (which will be symmetric around 0).

Clearly no fault filter of this type can be 100% accurate.
Two types of mistakes can be made (resulting in two dif-
ferent penalties) - errors may be small enough to escape
the filter (misses), or legitimate data may still be abnormal
enough to trip even the most carefully calibrated filter (false
alarms). A wide filter will result in more fault misses and er-
roneous data, while a narrow filter will result in too many
false alarms which will cause the application to spend time
recalculating already nonfaulty data, replacing it with sec-
ondary results that are inherently less accurate.

To find the filter bounds which strike the right balance
between misses and false alarms, both faulty and non-faulty
data pertaining to the application at hand must be investi-
gated in order to gauge the probabilities of the two types of
errors. In addition, the size of both penalties must be esti-
mated to determine which is heavier and should be avoided
as much as possible. If, for example, accepting an erroneous
result as correct imposes a very high cost (much higher than
recalculating a correct result), than we should select a filter
(or a set of filters) which limits the probability of a miss to,
say, ten percent, even at the expense of increasing the prob-
ability of a false alarm.
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No Errors Errors & No ALFTD Errors & 25% ALFTD Errors & 50% ALFTD
“Blob”: This set was cho-
sen for the broad areas of
unchanging temperature,
which is what we expect
of natural data.

“Spots”: Chosen for the
obvious spots. It is more
turbulent than stripe, and
the turbulence spreads over
a larger area.

“Stripe”: Chosen for the
swath of turbulent data
through the center. Rapid
changes in data foil the in-
terpolation method.

Figure 2. Visual representation of three representative sets of OTIS data - errorless, with errors, and
with error correction

4.2. Secondary Scaling

Out of the possible methods of secondary scaling men-
tioned in Section II, the scaling most fitting for OTIS proved
to be granularity reduction. Because the input is in the form
of a matrix row, we can consider calculating only a few cells
in the row and based on the spatial locality, calculate the
missing cells by interpolating their calculated neighboring
cells. This allows a reduction to 50%, 33%, 25% (and so
forth) of a row’s calculation overhead. The estimated tem-
perature � ��� of a skipped cell � is obtained by linear in-
terpolation between two calculated cells �� and ��:
� ��� � ����� �

�����������
�����

��� ���
To measure the error caused by a reduced granularity and
subsequent interpolation for an array of �� � ��, we de-
note by ���� ��, � ��� ��, and ���� �� the correct reading,
the value obtained through reduced granularity and interpo-
lation, and the relative error at ��� ��. Thus
���� �� � ��������� ������

������

and the average relative absolute error over the whole ar-

ray is ���	 �

�
��

���

�
��

���

�������

�����

Clearly, the finer the granularity, the smaller the inter-
polation error at the cost of a higher calculation overhead.
The next section presents numerical results pertaining to
ALFTD in the OTIS application.

5. Numerical Experiments

Our numerical experiments focused on the two aspects
of ALFTD in OTIS: ALFTD’s ability to detect faults - i.e.,
distinguish between faulty and non-faulty data, and its abil-
ity to repair the faults quickly and with minimal error.
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Figure 3. Frequency of the data values for the
three sample data sets (see Fig. 2)

To calculate the probability of a false alarm for a given
filter we must use statistics of correct data produced by the
application, while for the probability of a miss we need to
analyze faulty data.

As correct data, we selected three representative OTIS
datasets (named Blob, Spots, and Stripe), shown as
greyscale images in Fig. 2. For each of the three error-less
datasets in Fig. 2 we calculated the frequency graph
(Fig. 3) - used for the Natural Bounds filter, and the fre-
quency of differences graph (Fig. 4) - used for the Spatial
Locality filter.

The faulty data was obtained through simulation. If we
simulated very large or very small errors, almost any fil-
ter will be successful. We, therefore, simulated the “worst
case” for detection purposes - medium size errors. To gen-
erate the faulty data, we selected a set of ��� �� values out
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Figure 4. Frequency of the differences be-
tween neighboring data values (see Fig. 2)

of the “blob” set and injected errors with a probability of
�� � ���� into each pixel. The size of the errors was uni-
formly distributed between 1% and 5% of the correct value.
The results discussed next describe averages over ten such
experimental repetitions.

5.1. The Natural Bounds Filter

Fig. 5 demonstrates the trade-off between the misses and
the false alarms probabilities, for various settings of the fil-
ter bounds. If, for example, a fault miss is very costly and
the percentage of fault misses must be bounded by 10%,
then the interval (314,321) will be selected at the cost of a
very high false-alarm rate. If, on the other hand, false alarms
have to be avoided, then the larger range (304,331) will be
selected, increasing the percentage of misses significantly.
A more accurate analysis can be performed once the costs
����� and ����� of a fault miss and a false alarm, respec-
tively, are estimated. We can then minimize the expected
cost per pixel, ��, expressed by
�� � �� ����� ����� � ��� �� � ����� �����
where �� , �����, ����� are the probabilities of a faulty pixel,
miss and false alarm, respectively.

5.2. The Spatial Locality Filter

Observing Fig. 5, we see that the Natural Bounds filter by
itself is not sufficient since it is unable to reduce both misses
and false alarms at the same time. By adding the Spatial Lo-
cality filter, we may detect faults which have been missed by
the Natural Bounds filter. Some of the detected faults will be
the same, since the two filters are not totally uncorrelated –
a very high pixel value will usually also result in a high dif-
ference between it and its neighbor. Fig. 5 shows that the
Spatial Locality filter is better in reducing both misses and
false alarms. This is a result of the dataset and fault model
- the errors in pixels are in general larger than the differ-
ences between adjacent pixels. For smaller errors (or for a
less “stable” dataset) we may expect the Natural Bounds fil-
ter to be better.
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Figure 5. Percentages of false alarms and
fault misses for various bounds of the indi-
vidual and combined filters

5.3. The Union of Both Filters

Better fault detection can be expected when the two fil-
ters are used in series, i.e., a pixel is considered faulty if
it fails any of the two filters. Fig. 5 shows the false-alarm
probability (�����) vs. the miss probability (�����) trade-
offs for several configurations of both filters’ bounds (the
curves marked “Combined”).

Although the two filters’ effects are not cumulative, we
can achieve better fault detection with fewer false alarms
by using the union of the two filters. By using two filters in-
stead of one, we are making it more difficult for a pixel to
be accepted as correct and thus both the fault detection and
the false alarm probabilities are increased. Still, as evident
from Fig. 5, the increase in fault detection rate is higher than
the increase in false alarm rate, and thus, lower (i.e., better)
curves of ����� vs. ����� can be obtained.

The best configurations of the two filters’ bounds are the
points which are labeled in Fig. 5. As mentioned before, the
configuration to be selected out of these points depends on
the relative costs ����� and ����� of the two possible er-
rors, and is the one which minimizes the average pixel cost
�� defined above.

Numerical examples of the fault coverage possible with
these filters are available in [9].

5.4. Other Datasets

All the results described so far are based on the “Blob”
dataset. Applying the same filter configuration to the
“Stripe” set, yields very similar results. If the filters are ap-
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plied to the “Spots” dataset, the Natural Bounds filter re-
sults in worse misses vs. false-alarm combinations, since
the most frequent data values for the “Spots” are lower
than those in the other two datasets. This is a shortcom-
ing of the simple absolute Natural Bounds filter - any
deviation in range will result in many incorrect identifica-
tions. This is another reason why an application should not
rely on one filter and finding filters which are strongly dis-
joint would be beneficial.

5.5. Correction Error

The trade-off between time investment and calculation
quality is a variable for the end user to decide upon, which
ALFTD supports by being scalable.
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Figure 6. Average ALFTD correction error as
a function of fault probability, for several cal-
culation overheads

Fig. 6 shows the relationship between investment in sec-
ondary calculation runtime and the incurred relative error
averaged over the entire dataset as a function of the pixel
error probability. The 50% granularity provides the best im-
provement over the no correction case, but even the 25%
and 20% granularities produce a reasonably small error.

Since OTIS’s output can also be represented as a
greyscale bitmap, we used a graphical representation to
demonstrate the trade-off between calculation overhead
and fault correction. Fig. 2 shows series of temperature out-
puts which were collected by injecting faults into the cen-
ter rows, and then corrected with ALFTD. In these pictures,
the effects of even small uncorrected errors are visible, re-
sembling random snow. The diagrams show the effect
of ALFTD on output. While the 25% output is numeri-
cally reasonable, the image is disappointing (but passable).
The 50% output is good, but comes with a heavy over-
head. The compromise, 33%, seems to be the best choice.

6. Conclusion
ALFTD provides fault-tolerance with a significantly

smaller overhead than that of a full replication. It can be
combined with other methods of fault tolerance to in-
crease existing coverage.

The advantage of ALFTD comes from being imple-
mented at the application level. The overall cost of em-
ploying ALFTD is relative to the frequency of faults,
the quality of the filtering bands, and the tightness the
user wants to see in their data bounds. Our results in-
dicate that ALFTD is a suitable method for fault toler-
ance and detection in OTIS. As ALFTD is applied to a
broader spectrum of applications, new methods for fault fil-
tering and secondary scaling will arise, allowing it to per-
form with lower overhead and higher accuracy.
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