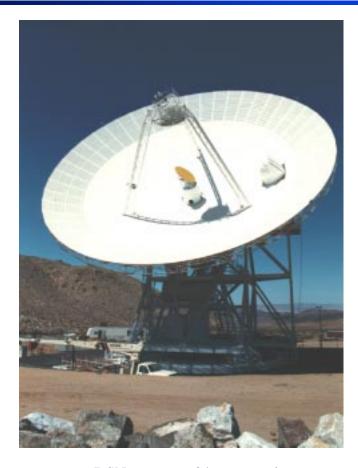
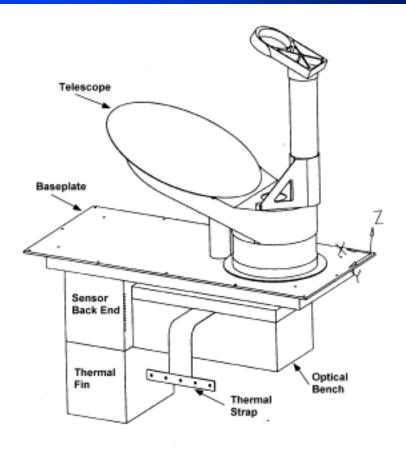
#### Large-Scale, Low-Cost Parallel Computers Applied to Reflector Antenna Analysis







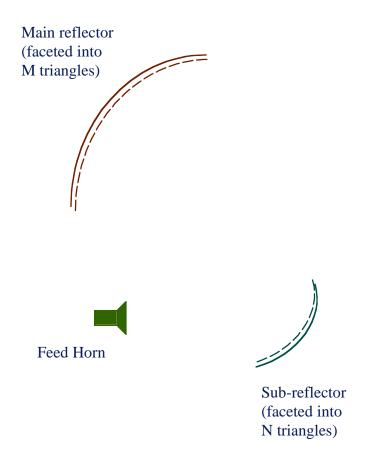

Daniel S. Katz, Tom Cwik


{Daniel.S.Katz, cwik}@jpl.nasa.gov



#### Physical Optics Application

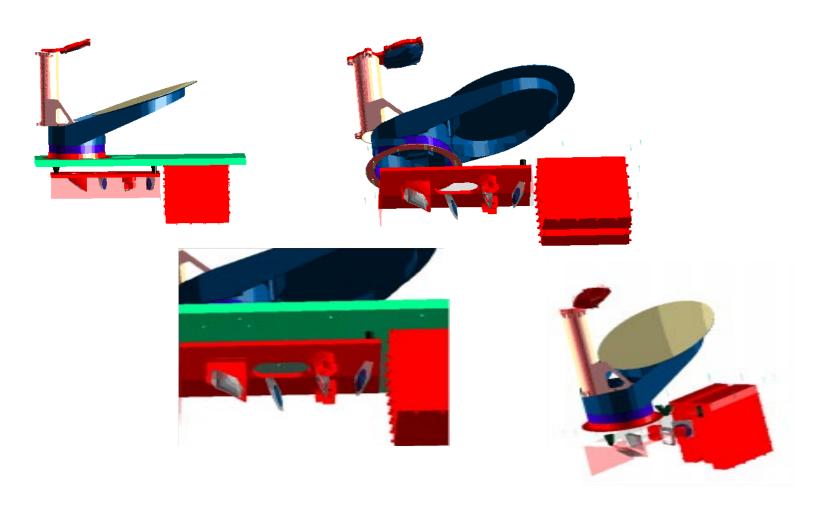



DSN antenna - 34 meter main



MIRO antenna - 30 cm main




#### Physical Optics Algorithm



- 1 Create mesh with N triangles on sub-reflector.
- 2 Compute N currents on sub-reflector due to feed horn (or read currents from file)
- 3 Create mesh with M triangles on main reflector
- 4 Compute M currents on main reflector due to currents on subreflector
- 5 Compute antenna pattern due to currents on main reflector (or write currents to file)



### Microwave Instrument for the Rosetta Orbiter(MIRO)





### PO Analysis of MIRO

| 190 GHz:        |             | 564 GHz:        |             |
|-----------------|-------------|-----------------|-------------|
| <u>Element</u>  | # triangles | <u>Element</u>  | # triangles |
| Analysis time   |             | Analysis time   |             |
| matching mirror | 1,600       | matching mirror | 6,400       |
| 17 seconds      |             | 193 seconds     |             |
| turning mirror  | 1,600       | polarizer       | 6,400       |
| 57 seconds      |             | 193 seconds     |             |
| sub-reflector   | 6,400       | turning mirror  | 6,400       |
| 1100 seconds    |             | 445 seconds     |             |
| main reflector  | 40,000      | sub-reflector   | 22,500      |
|                 |             | 5940 seconds    |             |
|                 |             | main reflector  | 90,000      |



#### Previous MIRO Analysis

- Cray J90 timings:
  - » 190 GHz:

Complete run (3 mirror pairs): 20 minutes

» 564 GHz:

Complete run (4 mirror pairs): 120 minutes

- Turnaround time of 2 hours is too long to do effective design work.
- Use parallel computing to decrease time to obtain results



#### Beowulf System at JPL (Hyglac)

16 Pentium Pro PCs, each with 2.5 Gbyte disk,
 128 Mbyte memory, Fast Ethernet card.

Connected using 100Base-T network, through a
 16-way crossbar switch

16-way crossbar switch.

Theoretical peak:3.2 GFLOP/s

Sustained:1.26 GFLOP/s





#### Hyglac Cost

Hardware cost: \$54,200 (as built, 9/96)

\$22,000 (estimate, 4/98)

- » 16 (CPU, disk, memory, cables)
- » 1 (16-way switch, monitor, keyboard, mouse)
- Software cost: \$600 ( + maintainance)
  - » Absoft Fortran compilers (should be \$900)
  - » NAG F90 compiler (\$600)
  - » public domain OS, compilers, tools, libraries



### Beowulf System at Caltech (Naegling)

~120 Pentium Pro PCs, each with 3 Gbyte disk,
 128 Mbyte memory, Fast Ethernet card.

Connected using 100Base-T network, through two

80-way switches, connected by a 4 Gbit/s link.

- Theoretical peak:~24 GFLOP/s
- Sustained: 10.9 GFLOP/s





#### Naegling Cost

Hardware cost: \$190,000 (as built, 9/97)
 \$154,000 (estimate, 4/98)

- » 120 (CPU, disk, memory, cables)
- » 1 (switch, front-end CPU, monitor, keyboard, mouse)
- Software cost: \$0 ( + maintainance)
  - » Absoft Fortran compilers (should be \$900)
  - » public domain OS, compilers, tools, libraries



#### Performance Comparisons

|                                   | Hyglac | Naegling | T3D | T3E600 |
|-----------------------------------|--------|----------|-----|--------|
| CPU Speed (MHz)                   | 200    | 200      | 150 | 300    |
| Peak Rate (MFLOP/s)               | 200    | 200      | 300 | 600    |
| Memory (Mbyte)                    | 128    | 128      | 64  | 128    |
| Communication<br>Latency (μs)     | 150    | 322      | 35  | 18     |
| Communication Throughput (Mbit/s) | 66     | 78       | 225 | 1200   |

(Communication results are for MPI code)



#### Message-Passing Methodology

Receiver issues (non-blocking) receive calls:

```
CALL MPI_IRECV(...)
```

 Sender issues (non-blocking, synchronous send calls:

```
CALL MPI_SSEND(...)
```

 Receiver issues (blocking) wait calls (to wait for receives to complete):



#### Parallelization of PO Algorithm

- Distribute (M) main reflector currents over all (P) processors
- Store all (N) sub-reflector currents redundantly on all (P) processors
- Creation of triangles is sequential, but computation of geometry information on triangles is parallel, so 1 and 3 are partially parallel
- Computation of currents (2, 4, and 5) is parallel, though communication is required in 2 (MPI\_Allgetherv) and 5 (MPI\_Reduce).
- Timing:
  - » Part I: Read input files, perform step 3
  - » Part II: Perform steps 1, 2, and 4
  - » Part III: Perform step 5 and write output files
- Algorithm:
  - 1 Create mesh with N triangles on sub-reflector.
  - 2 Compute N currents on sub-reflector due to feed horn (or read currents from file)
  - 3 Create mesh with M triangles on main reflector
  - 4 Compute M currents on main reflector due to currents on sub-reflector
  - 5 Compute antenna pattern due to currents on main reflector (or write currents to file)



# Physical Optics Results (Two Beowulf Compilers)

| Number of  | Part I | Part II | Part III | Total |
|------------|--------|---------|----------|-------|
| Processors |        |         |          |       |
| 1          | 0.0850 | 64.3    | 1.64     | 66.0  |
| 4          | 0.0515 | 16.2    | 0.431    | 16.7  |
| 16         | 0.0437 | 4.18    | 0.110    | 4.33  |

Time (minutes) on Hyglac, using gnu (g77 -02 -fno-automatic)

| Number of  | Part I | Part II | Part III | Total |
|------------|--------|---------|----------|-------|
| Processors |        |         |          |       |
| 1          | 0.0482 | 46.4    | 0.932    | 47.4  |
| 4          | 0.0303 | 11.6    | 0.237    | 11.9  |
| 16         | 0.0308 | 2.93    | 0.0652   | 3.03  |

Time (minutes) on Hyglac, using Absoft (£77 -0 -s)

$$M = 40,000 N = 4,900$$



# Physical Optics Results (T3D Optimization)

#### Change main integral calculation from:

| Number of  | Part II   | Part II   | Part III  | Part III  |
|------------|-----------|-----------|-----------|-----------|
| Processors | (no opt.) | (w/ opt.) | (no opt.) | (w/ opt.) |
| 1          | 85.8      | 48.7      | 1.90      | 0.941     |
| 4          | 19.8      | 12.2      | 0.354     | 0.240     |
| 16         | 4.99      | 3.09      | 0.105     | 0.0749    |

Time (minutes) on T3D, N=40,000, M=4,900



#### Physical Optics Results

| Number of Processors | Naegling | T3D  | T3E-600 |
|----------------------|----------|------|---------|
| 4                    | 95.5     | 102  | 35.1    |
| 16                   | 24.8     | 26.4 | 8.84    |
| 64                   | 7.02     | 7.57 | 2.30    |

Time (minutes), N=160,000, M=10,000

Cray J-90 Time : about 2 hours



### Expected new analysis times for MIRO

- Using Beowulf-class computers
  - » Can run 190 GHz case (3 paired mirrors):
    - 16 processors: about 1 minute
    - -64 processors: less than 20 seconds
  - » Can run 564 GHz case (4 paired mirrors):
    - 16 processors: about 25 minutes
    - -64 processors: about 7 minutes



#### Conclusions

- Beowulf-class computers can fit individual projects, such as MIRO, quite well
- They can enable a project with a limited budget to improve the time required to obtain results
- Reflector antenna analysis using Physical Optics is well-suited for these computers

