
Enabling Remote Management of FaaS Endpoints with Globus
Compute Multi-User Endpoints

Rachana Ananthakrishnan
rachana@globus.org

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Yadu Babuji
yadunand@uchicago.edu

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Matt Baughman
mbaughman@uchicago.edu

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Josh Bryan
josh@globus.org

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Kyle Chard
chard@uchicago.edu

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Ryan Chard
rchard@anl.gov

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Ben Clifford
benc@hawaga.org.uk

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Ian Foster
foster@anl.gov

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Daniel S. Katz
d.katz@ieee.org

University of Illinois
Urbana-Champaign

Champaign, Illinois, USA

Kevin Hunter Kesling
kevin@globus.org

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Chris Janidlo
cjanidlo@globus.org

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Reid Mello
reid@globus.org

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

Lei Wang
lei@globus.org

University of Chicago and Argonne
National Laboratory
Chicago, Illinois, USA

ABSTRACT
Globus Compute implements a hybrid Function as a Service (FaaS)
model in which a single cloud-hosted service is used by users
to manage execution of Python functions on user-owned and -
managed Globus Compute endpoints deployed on arbitrary com-
pute resources. Here we describe a new multi-user and multi-
configuration Globus Compute endpoint. This system, which can
be deployed by administrators in a privileged account, enables
dynamic creation of user endpoints that are forked as new pro-
cesses in user space. The multi-user endpoint is designed to provide
the security interfaces necessary for deployment on large, shared

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670612

HPC clusters by, for example, restricting user endpoint configura-
tions, enforcing various authorization policies, and via customizable
identity-username mapping.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Computing methodologies → Distributed computing
methodologies; • Human-centered computing→ Ubiquitous
and mobile computing.

KEYWORDS
Serverless, Globus Compute, Distributed Computing

ACM Reference Format:
Rachana Ananthakrishnan, Yadu Babuji, Matt Baughman, Josh Bryan, Kyle
Chard, Ryan Chard, Ben Clifford, Ian Foster, Daniel S. Katz, Kevin Hunter
Kesling, Chris Janidlo, Reid Mello, and Lei Wang. 2024. Enabling Remote
Management of FaaS Endpoints with Globus ComputeMulti-User Endpoints.
In Practice and Experience in Advanced Research Computing (PEARC ’24),
July 21–25, 2024, Providence, RI, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3626203.3670612

https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0001-5934-7525
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626203.3670612
https://doi.org/10.1145/3626203.3670612
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670612&domain=pdf&date_stamp=2024-07-17

PEARC ’24, July 21–25, 2024, Providence, RI, USA Ananthakrishnan, et al.

1 INTRODUCTION
Globus Compute, formerly known as funcX [2], is a hybrid cloud-
edge Function as a Service (FaaS) platform that enables managed
execution of functions across a distributed set of computing “end-
points.” The hybrid model combines a robust cloud-hosted service
as an interface for all user interactions with a user-installable soft-
ware agent to create personal endpoints. These endpoints provide an
interface to arbitrary remote computers to enable remote execution
of functions.

The Globus Compute software agent, the Python software re-
sponsible for creating a personal endpoint, was designed to support
a single user. The software uses Parsl [1] to provision resources
from the host computing system, for example, via batch schedulers
(e.g., Slurm, PBS). The agent allows users to install and configure
the endpoint for their use. As a user-installed and managed Python
process, users must users must first login (e.g., via SSH) to a target
system to pip install the Python-based agent and configure the end-
point. Users must subsequently login to the system to manage the
configured endpoint, for example to change the scheduler configu-
ration (e.g., allocation, queue name) or the way that resources are
provisioned (e.g., number of nodes in a batch job, number of work-
ers deployed on a node). This approach is problematic from several
perspectives. For example, from a user’s perspective, it is both cum-
bersome and error-prone, relying on users to login manually to
restart endpoints during system outages or modify configurations.
From an administrator perspective, there is no control of the user
endpoints deployed on their machines or ability to restrict how an
endpoint is used.

To address these challenges, we have developed a new multi-
user endpoint (MEP) that can be installed and managed by system
administrators to support many users on a single system. Installed
from native packages and deployed as a privileged user, the MEP
dynamically forks user endpoints (UEPs) as Python processes in
user space. The MEP uses a flexible identity mapping approach for
translating the identity used to authenticate with Globus Compute
to the local user account in which the UEP process is started. We
adopt the identity mapping approach that is used by the widely
deployed Globus Connect Server software.

2 GLOBUS COMPUTE MULTI-USER
ENDPOINTS

A multi-User endpoint (MEP) is effectively a manager of user-
endpoints (UEPs). In a typical non-MEP paradigm, a user would
SSH to a compute resource (e.g., a cluster’s login-node), create a
Python virtual environment (e.g., virtualenv, pipx, conda), and then
install and run “globus-compute-endpoint“ in their user-space. By
contrast, a MEP is a deployed as a privileged process (e.g., run as
root) by an administrator that then manages child processes for
other users. Upon receiving a "start endpoint" request from the
Globus Compute cloud service, a MEP creates a user-process by
fork()&_drop privileges_&_exec()_ pattern, and then watches that
child process until it terminates. User tasks are sent directly to the
UEP. That is, the MEP does not receive or execute tasks.

1 from globus_compute_sdk import Executor

2

3 def some_task (*a, **k):

4 return 1

5

6 mep_endpoint_id = "..."

7 config = { ... }

8 with Executor(endpoint_id=mep_endpoint_id ,

user_endpoint_config=config) as ex:

9 fut = ex.submit(some_task)

10 print("Result:", fut.result ())

2.1 User workflow
Users interact with a MEP in the same way they currently interact
with personal endpoints. After discovering an endpoint ID, for
example, via the Globus web service or site-specific documentation,
the user invokes a function using the Globus Compute Python
SDK (Listing 2). The only difference, is that a user can specify the
configuration for the user endpoint (e.g., the queue and allocation
to be used, number of workers to deploy on a node, and Conda
environment in which to execute tasks). As shown in Figure 1, the
workflow proceeds as follows.

Figure 1: Globus Compute Multi-User workflow. 1) A user
submits tasks to be executed, specifying the MEP ID and a
configuration of their user endpoint. 2) Globus Compute is-
sues a start endpoint request to the MEP, passing the user
identity and the UEP ID to be started. Credentials to access
the UEP queue are also supplied. 3) The UEP is started and
retrieves tasks from Globus Compute, provisions local re-
sources, executes the tasks, and returns results to Globus
Compute. The UEP shuts down after some period of inactiv-
ity.

(1) The SDK sends a POST request to the Globus Compute web
service.

(2) The web service identifies the endpoint as a MEP and gener-
ates a UEP id specific to the tuple of the ‘mep_endpoint_id‘,
the identity id of the user making the request, and the end-
point configuration in the request (e.g., “tuple(endpoint_id,
identity_id, endpoint_configuration)“ this identifier is simul-
taneously stable and unique.

(3) The web service sends a start-UEP request to the MEP (via
AMQP), asking it to start an endpoint identified by the id
generated in the previous step, and as the user identified by
the REST request.

(4) The MEP maps the Globus Auth identity in the start-UEP
request to a local username.

(5) The MEP starts a UEP as the UID from the previous step.
(6) The UEP communicates with the Globus Compute web ser-

vice, it accepts the original task submission, executes the
task, and returns the results.

Enabling Remote Management of FaaS Endpoints with Globus Compute Multi-User Endpoints PEARC ’24, July 21–25, 2024, Providence, RI, USA

2.2 Resource configuration
One benefit of the MEP model is that users can remotely config-
ure UEPs and thus the MEP also serves as a multi-configuration
endpoint. Unlike the personal endpoint, which requires that users
preconfigure the endpoint before it is started and cannot change
that configuration remotely. The UEP configuration model allows
users to specify configurable parameters (e.g., allocation, queue
name, number of nodes) following a template set by the MEP ad-
ministrator (user_config_template.yaml). For example, in List-
ing 2.2 we see the user is able to specify their allocation id, queue
name, max number of workers per node, and conda environment to
load as a JSON document passed when creating the executor. The
MEP will reuse the user’s existing UEP if executors are constructed
with the same endpoint configuration. It determines equivalence
by hashing the JSON document and thus users can force new UEPs
to be created by modifying any attribute of the configuration (e.g.,
the label).
1 with Executor(

2 endpoint_id=mep_site_id ,

3 user_endpoint_config ={

4 "account_id": "<ALLOCATION ID>",

5 "queue": "gpu",

6 "max_workers_per_node": 64,

7 "worker_init": "conda activate environment"}

8) as ex:

9 fut = ex.submit(some_task)

10 print("Result:", fut.result ())

2.3 Identity mapping
Before forking the UEP process, the MEP must map the identity
used to authenticate with Globus Compute (a Globus Auth Iden-
tity Set) to a local username on the MEP resource. The local user-
name is passed to getpwnam(3) to ascertain a UID for the user and
then to fork the UEP process. Rather than develop a new mapping
method, we instead use the flexible method used by Globus Connect
Server. We allow administrators to specify a mapping file in the
MEP config.yaml file. The mapping file supports various methods
for converting an identity set to a local user account including static
mappings (e.g., bob@uchicago.edu -> bob), rule-based mappings
based on identity provider (e.g., map <username>@uchicago.edu
to <username>), and even using an external program. Note: if an
administrator has previously configured a mapping file with Globus
Connect Server, they can reuse the samemapping file for the Globus
Compute MEP.

2.4 Restricting user configuration
Discussions with administrators indicated the need to restrict user
configurations to, for example, better support use of their systems
(e.g., setting the scheduler type, listing known queue names, pre-
defining sbatch arguments necessary to mount file systems, and
specifying internal network interfaces for communication) and en-
sure use follows defined policies (e.g., node counts, wall times).
We support these restrictions by enabling MEP administrators to
define templates that specify set properties while leaving others
as variables that can be specified in the user endpoint configura-
tion. Further, we allowed administrators to also restrict the range
of functions that can be executed on an endpoint by specifying

a whitelist of function IDs. Finally, as part of the identity map-
ping, administrators can restrict which users are able to access the
endpoint.

2.5 Security model
The MEP implements a comprehensive and multi-layer security
model to ensure only authorized execution of tasks. Globus Com-
pute uses Globus Auth to manage user authentication and autho-
rization. All requests to Globus Compute are associated with an
user identity set. The identity set can include one or more linked
identities from the thousands of supported identity providers (e.g.,
InCommon, Google, ORCID). As described above, we use the same
identity mapping approach that is used by Globus Connect Server
to determine to which user account to map an identity set. This
model has been validated by security reviews and is in production
in more than 30,000 Globus Connect Server deployments.

Globus Auth supports the concept of Auth Policies, which gov-
ern authentication timeouts and allowed domains from which a
user may use linked identities to access a MEP endpoint. Auth
Policies can be specified in the MEP configuration file. For exam-
ple, if deployed on a supercomputer at the Argonne Leadership
Computing Facility (ALCF), the authentication domain can be set
to “alcf.anl.gov,” and authentication timeout can be set to 12 hours.
The user then has to authenticate with an ALCF identity every 12
hours to submit new tasks to the endpoint.

Since MEP adopts a model where all task execution and job
submission is done in a process running as a local user, we rely on
standard POSIX security controls and privileges to govern what
tasks submitted to the endpoint are allowed to do. This means any
limitations on resources such as CPU, node allocations, or scheduler
queue access that apply to that user’s local account will apply to
tasks submitted to the Globus Compute UEP on their behalf.

Finally, all communication between Globus Compute and the
endpoints is secured to ensure the confidentiality and authenticity
of data. Transport Layer Security (TLS) is used to encrypt data in
transit. For example, from client to web service, web service to
endpoints (over AMQPS), and from endpoints to workers.

3 EVALUATION
We evaluate the overhead of creating UEPs and the scalability of
the MEP deployed on a single node. We run experiments on the
Jetstream cloud [7] and deploy theMEP on am3.2xl instance with 64
CPU cores, 250 GB RAM, and 60 GB root disk. In both experiments,
we create a Globus Compute Executor deployed on a laptop and
we update that executor with unique UEP configurations by setting
the description to a random string.

Figure 2a shows the overhead of deploying UEPs as we increase
the number of UEPs from 1 to 64. We record the time from when
we submit a “no-op” task to each UEP, until all tasks return. We see
creation time is linear as we use a single executor that waits for the
UEP to start before starting the next.

Figure 2b shows a strong scaling study where we execute 64
ten-second tasks. We increase the number of UEPs and the number
of workers per UEP. We divide the available cores among the UEPs
so as not to exceed the capacity of the node. We record the time
from when the task is submitted until all results are returned and

PEARC ’24, July 21–25, 2024, Providence, RI, USA Ananthakrishnan, et al.

(a) Time to create UEP endpoints as we increase the number of
UEPs.

(b) Strong scaling experiment to run 64 tasks as we increase the
number of UEPs.

Figure 2: Scaling of MEP and UEP endpoints.

therefore include the UEP startup cost. We see good scaling as we
increase the number of workers and as we increase the number of
UEPs.

4 RELATEDWORK
Various abstraction layers have been developed to hide the dif-
ferences between batch schedulers. For example, SAGA [6], DR-
MAA [11] and PSI/J [8] provide common interfaces for submitting
batch jobs to schedulers. Systems, such as Globus Toolkit [5] and
Unicore [10] provided remote interfaces for job submission in Grid
Computing environments. For example, Globus GRAM [3] imple-
mented various services for submitting and monitoring jobs. GRAM
was administrator deployed and exposed a web service API for job
submission. It used Grid Security methods for authentication/au-
thorization and mapped users to local accounts using a gridmap file.
Unlike, Globus Compute, it supported only batch jobs rather than

programming functions and did not provide the flexible configura-
tion and restrictions offered by Globus Compute MEPs. Workflow
systems, such as Parsl [1] and Pegasus [4] offer remote comput-
ing capabilities. These systems coordinate execution as a single
user and rely on methods like pre-established SSH connections
for remote execution. Open OnDemand [9] provides a web-based
interface to remote HPC computers. Users can login via their insti-
tutional identity, manage data, and create and manage batch jobs.
Open OnDemand provides a template for submitting batch jobs,
mirroring the underlying scheduler batch file format. Open On-
Demand is installed as a web application in Apache on the target
system and relies on supported Apache authentication. Identity
mapping is performed using a similar method to Globus Compute
by using static mappings, regex patterns, and via scripts. Globus
Compute provides a higher level interface for function execution
across connected endpoints.

5 SUMMARY
Globus Computemulti-user endpoints enable administrator-managed
deployment of FaaS capabilities on existing computing resources,
from clouds to HPC clusters. The multi-user endpoint is able to
fork single-user endpoints in local user accounts using the widely-
deployed Globus identity mapping model. Users can dynamically
configure an endpoint, via the cloud-hosted Globus Compute API,
specifying, for example, allocation name, queue name, and resources
to be allocated. Importantly, administrators can restrict these end-
point configurations and provide templated options to users. Admin-
istrators also have complete control of which users are permitted
to access an endpoint and what local user accounts those users are
to be mapped to.

ACKNOWLEDGMENTS
This work was supported in part by NSF 2004894/2004932 and
Laboratory Directed Research and Development funding from Ar-
gonne National Laboratory under U.S. Department of Energy under
Contract DE-AC02-06CH11357 and used resources of the Argonne
Leadership Computing Facility.

REFERENCES
[1] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin Wozniak, Ian Foster, MikeWilde, and
Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python. In 28th ACM
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC).

[2] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. funcX: A Federated Function Serving
Fabric for Science. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Stockholm, Sweden) (HPDC
’20). Association for Computing Machinery, New York, NY, USA, 65–76. https:
//doi.org/10.1145/3369583.3392683

[3] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. 1998. A resource management architecture for meta-
computing systems. In Job Scheduling Strategies for Parallel Processing, Dror G.
Feitelson and Larry Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 62–82.

[4] Ewa Deelman, Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira da Silva,
George Papadimitriou, and Miron Livny. 2019. The Evolution of the Pegasus
Workflow Management Software. Computing in Science & Engineering 21, 4
(2019), 22–36. https://doi.org/10.1109/MCSE.2019.2919690

[5] Ian Foster and Carl Kesselman. 1998. The Globus Toolkit. In The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 259–278.

https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1109/MCSE.2019.2919690

Enabling Remote Management of FaaS Endpoints with Globus Compute Multi-User Endpoints PEARC ’24, July 21–25, 2024, Providence, RI, USA

[6] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Gre-
gor von Laszewski, Craig Lee, Andre Merzky, Hrabri Rajic, and John Shalf. 2006.
SAGA: A Simple API for Grid Applications. High-level application programming
on the Grid. Computational Methods in Science and Technology 12, 1 (2006), 7–20.

[7] David Y. Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-Childs,
Marlon Pierce, Suresh Marru, J. Eric Coulter, Matthew Vaughn, Brian Beck, Nirav
Merchant, Edwin Skidmore, and Gwen Jacobs. 2021. Jetstream2: Accelerating
cloud computing via Jetstream. In Practice and Experience in Advanced Research
Computing (Boston, MA, USA) (PEARC ’21). Article 11, 8 pages. https://doi.org/
10.1145/3437359.3465565

[8] Mihael Hategan-Marandiuc, AndreMerzky, Nicholson Collier, KetanMaheshwari,
Jonathan Ozik, Matteo Turilli, Andreas Wilke, Justin M. Wozniak, Kyle Chard,

Ian Foster, Rafael Ferreira da Silva, Shantenu Jha, and Daniel Laney. 2023. PSI/J:
A Portable Interface for Submitting, Monitoring, and Managing Jobs. In 2023
IEEE 19th International Conference on e-Science (e-Science). 1–10. https://doi.org/
10.1109/e-Science58273.2023.10254912

[9] Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, Eric Franz, Trey
Dockendorf, and Brian L. McMichael. 2018. Open OnDemand: A web-based
client portal for HPC centers. Journal of Open Source Software 3, 25 (2018), 622.

[10] Mathilde Romberg. 2002. The UNICORE grid infrastructure. Scientific Program-
ming 10, 2 (2002), 149–157.

[11] Peter Troger, Hrabri Rajic, Andreas Haas, and Piotr Domagalski. 2007. Standard-
ization of an API for Distributed Resource Management Systems. In 7th IEEE
International Symposium on Cluster Computing and the Grid. 619–626.

https://doi.org/10.1145/3437359.3465565
https://doi.org/10.1145/3437359.3465565
https://doi.org/10.1109/e-Science58273.2023.10254912
https://doi.org/10.1109/e-Science58273.2023.10254912

	Abstract
	1 Introduction
	2 Globus Compute Multi-User Endpoints
	2.1 User workflow
	2.2 Resource configuration
	2.3 Identity mapping
	2.4 Restricting user configuration
	2.5 Security model

	3 Evaluation
	4 Related work
	5 Summary
	Acknowledgments
	References

